Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Tetra-O-4-methylphenylsulfonylpentaerythritol

Shu-Xian Li,^{a,b} Lin Zhu,^b Hoong-Kun Fun^{c*} and Suchada Chantrapromma^d[‡]

^aDepartment of Chemistry, Handan College, Handan, Hebei 056005, People's Republic of China, ^bDepartment of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China, ^cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^dCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand Correspondence e-mail: hkfun@usm.my

Received 30 June 2008; accepted 4 July 2008

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; R factor = 0.044; wR factor = 0.120; data-to-parameter ratio = 22.6.

In the title molecule (systematic name: methanetetrayltetramethylene tetra-*p*-toluenesulfonate), $C_{33}H_{36}O_{12}S_4$, the central C atom and the S atoms exhibit distorted tetrahedral configurations. The aromatic rings in opposite arms are nearly parallel to each other, with a dihedral angle of 10.26 (8) or 3.45 (9)°. The molecules are linked into a two-dimensional network parallel to the *bc* plane by weak $C-H \cdots O$ hydrogen bonds, $\pi - \pi$ [centroid–centroid distance = 3.5806 (12) Å] and $S - O \cdots \pi$ [O \cdots centroid = 3.1455 (15) Å and $S - O \cdots$ centroid = 122.41 (7)°] intermolecular interactions. Intramolecular C– $H \cdots O$ hydrogen bonds are also present.

Related literature

For bond-length data, see: Allen et al. (1987). For a related structure, see: Li et al. (2008). For general background and applications of pentaerythritol derivatives, see: Constable et al. (1998); Fundueanu et al. (1998); Jiang et al. (2002); Kim et al. (2000); Luo & Chen (2001); Mischiati et al. (2001); Oike et al. (2001).

Experimental

Crystal data

β

$C_{33}H_{36}O_{12}S_4$	V = 3460.50 (8) Å ³
$M_r = 752.86$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 13.2983 (2) Å	$\mu = 0.34 \text{ mm}^{-1}$
b = 18.0368 (2) Å	T = 100.0 (1) K
c = 15.4181 (2) Å	$0.47 \times 0.41 \times 0.16 \text{ mm}$
$\beta = 110.653 \ (1)^{\circ}$	

45048 measured reflections

 $R_{\rm int} = 0.039$

446 parameters

 $\Delta \rho_{\rm max} = 0.66 \ {\rm e} \ {\rm \AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.42 \text{ e} \text{ Å}^{-3}$

10090 independent reflections

7927 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2005) $T_{\min} = 0.857, T_{\max} = 0.949$

Refinement

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C2-H2C···O4	0.97	2.48	2.849 (2)	102
$C3-H3B\cdots O6$	0.97	2.47	2.905 (2)	107
$C3-H3B\cdots O7$	0.97	2.55	2.876 (2)	100
$C3-H3C\cdots O9^{i}$	0.97	2.46	3.433 (2)	175
$C4 - H4A \cdots O4$	0.97	2.55	2.879 (2)	100
C5−H5B···O12	0.97	2.44	2.888 (2)	107
$C5-H5C\cdots O7$	0.97	2.49	2.8396 (19)	101
$C7 - H7A \cdots O2$	0.93	2.58	2.937 (2)	103
$C8-H8B\cdots O11^{ii}$	0.93	2.52	3.140 (2)	124
$C10-H10A\cdots O6^{i}$	0.93	2.41	3.257 (2)	151
C18-H18A···O6	0.93	2.59	2.932 (2)	103
$C22 - H22A \cdots O12^{iii}$	0.93	2.52	3.154 (2)	126
$C25 - H25A \cdots O8$	0.93	2.56	2.924 (2)	104
C28-H28A···O12	0.93	2.54	2.905 (2)	104
$C29-H29A\cdots O8^{iv}$	0.93	2.42	3.334 (2)	165
$C31 - H31A \cdots O12^{iii}$	0.93	2.53	3.209 (2)	130

Symmetry codes: (i) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) -x, -y + 1, -z + 1; (iii) $x, -y + \frac{1}{2}, z + \frac{1}{2}$; (iv) $-x, y - \frac{1}{2}, -z + \frac{3}{2}$

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

The authors gratefully acknowledge the financial assistance of Beijing Normal University. The authors also thank Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2625).

[‡] Additional correspondence author, e-mail: suchada.c@psu.ac.th.

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
- Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Constable, E. C., Housecroft, C. E., Cattalini, M. & Phillips, D. (1998). New J. Chem. pp. 193–200.
- Fundueanu, G., Esposito, E., Mihai, D., Carpov, A., Desbrieres, J., Rinaudo, M. & Nastruzzi, C. (1998). Int. J. Pharm. 170, 11–21.
- Jiang, H., Lee, S. J. & Lin, W. (2002). Org. Lett. 4, 2149-2152.

- Kim, J., Leong, A. J., Lindoy, L. F., Kim, J., Nachbaur, J., Nezhadali, A., Rounaghi, G. & Wei, G. (2000). J. Chem. Soc. Dalton Trans. pp. 3453–3459.
- Li, S.-X., Li, H.-M., Lu, Z.-L., Fun, H.-K. & Chantrapromma, S. (2008). Acta Cryst. E64, 01472–01473.
- Luo, F. T. & Chen, C. H. (2001). Heterocycles, 55, 1663-1678.
- Mischiati, C., Jeang, K.-T., Feriotto, G., Breda, L., Borgatti, M., Bianchi, N. & Gambari, R. (2001). Antisense Nucleic Acid Drug Dev. 11, 209–217.
- Oike, H., Hamada, M., Eguchi, S., Danda, Y. & Tezuka, Y. (2001). *Macromolecules*, **34**, 2776–2782.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Acta Cryst. (2008). E64, o1474-o1475 [doi:10.1107/S1600536808020643]

Tetra-O-4-methylphenylsulfonylpentaerythritol

S.-X. Li, L. Zhu, H.-K. Fun and S. Chantrapromma

Comment

Pentaerythritol is a valuable starting point for building complex molecular and supramolecular structures due to its symmetric four-armed geometry and is widely used in macromolecular chemistry (Oike *et al.*, 2001), medicinal chemistry (Mischiati *et al.*, 2001; Fundueanu *et al.*, 1998), in the construction of dendrimers (Jiang *et al.*, 2002; Constable *et al.*, 1998) and other applications (Kim *et al.*, 2000; Luo & Chen, 2001). To explore the potential of the pentaerythritol unit in supramolecular chemistry, we report herein the synthesis and crystal structure of tetra-*O*-(4-methylphenylsulfonyl)pentaerythritol, the title compound.

In the title molecule (Fig. 1), atoms C1, S1, S2, S3 and S4 exhibit the usual distorted tetrahedral configuration. The aromatic rings in opposite arms of the molecule are nearly parallel to each other; the dihedral angles between the C6–C11 (A) and C20–C25 (B) benzene rings is 10.26 (8)° and that between the C13–C18 (C) and C27–C32 (D) benzene rings is 3.45 (9)°. The dihedral angle between the adjacent benzene rings are: A/C 49.67 (9)°, A/D 52.93 (9)°, B/C 53.20 (9)° and B/D 56.15 (9)°. The O1/O7/C1/C2/C4 plane (r.m.s. deviation 0.039 Å) forms dihedral angles of 81.59 (5)° and 84.85 (5)°, respectively, with the rings A and B. The benzene rings C and D form dihedral angles of 59.75 (5)° and 62.82 (5)°, respectively, with the O4/O10/C1/C3/C5 plane. The conformations of the four 4-methylphenylsulfonyl groups with respect to the pentaerythritol unit (C1–C5/O1/O4/O7/O10) can be indicated by torsion angles S1–O1–C2–C1 = -175.72 (10)°, S2–O4–C3–C1 = 154.00 (10)°, S3–O7–C4–C1 = -179.78 (10)° and S4–O10–C5–C1 = 154.75 (10)°. Bond lengths and angles in the title molecule are in normal ranges (Allen *et al.*, 1987) and comparable to those in a related structure (Li *et al.*, 2008).

In the crystal packing (Fig. 2), the molecules are linked into a two-dimensional network parallel to the *bc* plane by weak C—H···O hydrogen bonds (Table 1). In addition, π - π interactions are observed between C13-C18 (centroid Cg1) and C27-C32 (centroid Cg2) benzene rings at (x, y, z) and (1+x, y, z), respectively, with centroid-centroid distance of 3.5806 (12) Å. Also, an S—O··· π intermolecular interaction is observed [O3···Cg2ⁱ = 3.1455 (15) Å and S1—O3···Cg2ⁱ = 122.41 (7)°; the symmetry code is given in Table 1].

Experimental

The title compound was synthesized by dissolving pentaerythritol (1.36 g, 10.0 mmol) in dry pyridine (80 ml) and tosyl chloride (9.5 g, 50.0 mmol) was then added. The reaction mixture was stirred for 24 h at room temperature, after which it was poured into ice-water (250 ml) containing 1 M HCl and extracted with CH_2Cl_2 (80 × 3 ml). The organic layer was washed with water (60 × 2 ml), dried with MgSO₄ and concentrated. The solid residue was recrystallized from ethanol to afford the desired compound as a white solid (6.42 g, yield: 90%). Block-shaped colourless single crystals of the title compound suitable for *X*-ray structure determination were recrystallized from ethanol by slow evaporation of the solvent in the open air at room temperature (m.p. 423 K).

Refinement

All H atoms were placed in calculated positions, with C-H = 0.93 Å, $U_{iso} = 1.2U_{eq}(C)$ for aromatic, C-H = 0.97 Å, $U_{iso} = 1.2U_{eq}(C)$ for CH₂ and C-H = 0.96 Å, $U_{iso} = 1.5U_{eq}(C)$ for CH₃ atoms. A rotating group model was used for the methyl groups.

Figures

Fig. 1. The molecular structure of the title compound, showing 40% probability displacement ellipsoids and the atomic numbering.

Fig. 2. The crystal packing of the title compound, viewed down the *b* axis. Hydrogen bonds are shown as dashed lines.

methanetetrayltetramethylene tetra-p-toluenesulfonate

Crystal data	
$C_{33}H_{36}O_{12}S_4$	$F_{000} = 1576$
$M_r = 752.86$	$D_{\rm x} = 1.445 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Melting point: 423 K
Hall symbol: -P 2ybc	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
<i>a</i> = 13.2983 (2) Å	Cell parameters from 10090 reflections
b = 18.0368 (2) Å	$\theta = 1.8 - 30.0^{\circ}$
c = 15.4181 (2) Å	$\mu = 0.34 \text{ mm}^{-1}$
$\beta = 110.653 \ (1)^{\circ}$	T = 100.0 (1) K
$V = 3460.50 (8) \text{ Å}^3$	Block, colourless
Z = 4	$0.47 \times 0.41 \times 0.16 \text{ mm}$

Data collection

10090 independent reflections
7927 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.039$
$\theta_{\text{max}} = 30.0^{\circ}$
$\theta_{\min} = 1.8^{\circ}$
$h = -18 \rightarrow 17$
$k = -25 \rightarrow 25$

$T_{\min} = 0.857, \ T_{\max} = 0.949$	$l = -21 \rightarrow 21$
45048 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.043$	H-atom parameters constrained
$wR(F^2) = 0.119$	$w = 1/[\sigma^2(F_0^2) + (0.0595P)^2 + 1.2746P]$ where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.04	$(\Delta/\sigma)_{\rm max} = 0.001$
10090 reflections	$\Delta \rho_{max} = 0.66 \text{ e } \text{\AA}^{-3}$
446 parameters	$\Delta \rho_{\rm min} = -0.42 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

methods

Special details

Experimental. The low-temparture data was collected with the Oxford Cryosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\dot{A}^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
S1	0.04280 (3)	0.38393 (2)	0.37155 (3)	0.01965 (9)
S2	0.41959 (4)	0.31806 (2)	0.71340 (3)	0.02583 (10)
S3	0.16570 (3)	0.37598 (2)	0.89436 (3)	0.02097 (9)
S4	-0.18947 (4)	0.29379 (2)	0.54246 (3)	0.02429 (10)
01	0.06272 (10)	0.34535 (6)	0.46843 (7)	0.0207 (2)
O2	-0.01854 (10)	0.45006 (6)	0.36647 (8)	0.0249 (2)
O3	0.00233 (10)	0.32556 (7)	0.30634 (8)	0.0267 (3)
O4	0.30102 (10)	0.34530 (6)	0.65781 (9)	0.0256 (3)
O5	0.48315 (12)	0.38305 (7)	0.72159 (10)	0.0347 (3)
O6	0.41903 (11)	0.28056 (7)	0.79505 (9)	0.0323 (3)
07	0.14708 (10)	0.33953 (6)	0.79639 (7)	0.0213 (2)
08	0.24146 (10)	0.43489 (6)	0.90850 (8)	0.0256 (3)
09	0.18879 (11)	0.31437 (6)	0.95619 (8)	0.0280 (3)
O10	-0.07710 (10)	0.33045 (6)	0.60052 (8)	0.0237 (2)
O11	-0.26269 (11)	0.35436 (7)	0.52419 (10)	0.0334 (3)

O12	-0.17766 (11)	0.25301 (7)	0.46728 (8)	0.0302 (3)
C1	0.11235 (13)	0.34044 (8)	0.63322 (10)	0.0189 (3)
C2	0.08925 (14)	0.39261 (8)	0.55016 (11)	0.0205 (3)
H2B	0.0296	0.4252	0.5457	0.025*
H2C	0.1518	0.4227	0.5563	0.025*
C3	0.21256 (13)	0.29377 (8)	0.64564 (12)	0.0213 (3)
H3B	0.2282	0.2619	0.6995	0.026*
НЗС	0.2015	0.2629	0.5915	0.026*
C4	0.12796 (14)	0.38928 (8)	0.71795 (11)	0.0203 (3)
H4A	0.1888	0.4222	0.7284	0.024*
H4B	0.0643	0.4191	0.7090	0.024*
C5	0.01947 (13)	0.28597 (8)	0.61833 (11)	0.0207 (3)
H5B	0.0121	0.2538	0.5660	0.025*
H5C	0.0322	0.2555	0.6730	0.025*
C6	0.17148 (13)	0.40800 (8)	0.37554 (10)	0.0193 (3)
C7	0.20491 (14)	0.48153 (9)	0.38533 (12)	0.0246 (3)
H7A	0.1592	0.5190	0.3905	0.030*
C8	0.30696 (15)	0.49811 (9)	0.38722 (13)	0.0284 (4)
H8B	0.3296	0.5473	0.3936	0.034*
С9	0.37690 (14)	0.44311 (10)	0.37979 (12)	0.0265 (3)
C10	0.34113 (15)	0.36985 (9)	0.36990 (12)	0.0274 (4)
H10A	0.3868	0.3324	0.3647	0.033*
C11	0.23934 (15)	0.35158 (9)	0.36764 (12)	0.0249 (3)
H11B	0.2165	0.3025	0.3610	0.030*
C12	0.48782 (16)	0.46125 (12)	0.38123 (15)	0.0365 (4)
H12B	0.5096	0.5085	0.4104	0.055*
H12C	0 4874	0 4630	0 3189	0.055*
H12D	0.5372	0 4238	0.4154	0.055*
C13	0.44820(14)	0 25381 (9)	0 64082 (12)	0.0250(3)
C14	0 48460 (15)	0 27930 (10)	0.57213(12)	0.0279(4)
H14A	0 4921	0.3298	0 5641	0.033*
C15	0.50952 (15)	0 22807 (10)	0.51580 (13)	0.0296 (4)
H15A	0 5344	0.22447	0.4699	0.035*
C16	0.49800 (15)	0.15206 (10)	0.52657 (13)	0.0290 (4)
C17	0.46100 (15)	0.13200(10) 0.12852(10)	0.52637 (13)	0.0290(1) 0.0306(4)
H17A	0.4530	0.0780	0.6042	0.037*
C18	0.43601 (14)	0.17829 (9)	0.65301 (13)	0.037 0.0266 (3)
H18A	0.4113	0.17827 (7)	0.6990	0.0200 (3)
C19	0.52492 (17)	0.1017 0.09697 (12)	0.6790	0.032 0.0370 (4)
H19A	0.5668	0.0573	0.5013	0.0570(4)
HIOR	0.5654	0.1212	0.4320	0.056*
H19D	0.3034	0.1212	0.4320	0.056*
C20	0.4397 0.04014 (14)	0.0773	0.4203	0.030°
C20	-0.04285(15)	0.41525(0) 0.36580(0)	0.88330(11) 0.88235(12)	0.0211(3) 0.0262(4)
H21A	-0.0325	0.3148	0.8863	0.0202 (4)
C22	-0.1/120(15)	0.3140	0.0005	0.031
U22 H22A	0.14120 (13) -0 1060	0.39000 (10)	0.8750	0.0273(4) 0.022*
1122A C22	0.1707	0.3040	0.86012 (12)	0.035°
C23	-0.13635(13)	0.47227(10)	0.00912(12)	0.0237(3)
0.24	-0.07483 (10)	0.31828 (10)	0.00920 (13)	0.0295 (4)

H24A	-0.0855	0.5693	0.8647	0.035*
C25	0.02422 (15)	0.48965 (9)	0.87594 (12)	0.0267 (4)
H25A	0.0795	0.5211	0.8755	0.032*
C26	-0.26526 (16)	0.50341 (11)	0.86390 (14)	0.0345 (4)
H26A	-0.2727	0.5529	0.8395	0.052*
H26B	-0.2694	0.5043	0.9248	0.052*
H26C	-0.3219	0.4729	0.8240	0.052*
C27	-0.21526 (13)	0.23237 (9)	0.61915 (12)	0.0229 (3)
C28	-0.21199 (14)	0.15680 (9)	0.60537 (12)	0.0250 (3)
H28A	-0.1927	0.1383	0.5571	0.030*
C29	-0.23782 (15)	0.10914 (10)	0.66464 (13)	0.0289 (4)
H29A	-0.2360	0.0582	0.6556	0.035*
C30	-0.26628 (15)	0.13558 (11)	0.73704 (13)	0.0294 (4)
C31	-0.26943 (15)	0.21215 (11)	0.74919 (13)	0.0304 (4)
H31A	-0.2891	0.2307	0.7972	0.037*
C32	-0.24395 (15)	0.26053 (10)	0.69117 (12)	0.0278 (4)
H32A	-0.2459	0.3114	0.7000	0.033*
C33	-0.29291 (18)	0.08257 (13)	0.80129 (15)	0.0412 (5)
H33A	-0.3346	0.0421	0.7661	0.062*
H33B	-0.3335	0.1080	0.8328	0.062*
H33C	-0.2276	0.0637	0.8460	0.062*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S 1	0.0232 (2)	0.02041 (17)	0.01541 (17)	0.00089 (14)	0.00691 (15)	-0.00004 (13)
S2	0.0271 (2)	0.0254 (2)	0.0251 (2)	-0.00384 (16)	0.00944 (17)	-0.00123 (16)
S3	0.0284 (2)	0.01908 (17)	0.01522 (18)	0.00331 (14)	0.00744 (16)	0.00123 (13)
S4	0.0255 (2)	0.02166 (18)	0.0239 (2)	0.00318 (15)	0.00649 (17)	-0.00113 (15)
01	0.0300 (6)	0.0187 (5)	0.0152 (5)	-0.0004 (4)	0.0103 (5)	-0.0008 (4)
O2	0.0259 (6)	0.0246 (5)	0.0243 (6)	0.0052 (5)	0.0090 (5)	0.0024 (5)
O3	0.0298 (7)	0.0288 (6)	0.0193 (6)	-0.0038 (5)	0.0060 (5)	-0.0053 (5)
O4	0.0273 (6)	0.0218 (5)	0.0310 (6)	0.0007 (5)	0.0143 (5)	0.0025 (5)
05	0.0381 (8)	0.0302 (6)	0.0361 (7)	-0.0115 (5)	0.0133 (6)	-0.0044 (5)
O6	0.0386 (8)	0.0343 (7)	0.0228 (6)	-0.0049 (6)	0.0093 (6)	0.0004 (5)
07	0.0321 (7)	0.0177 (5)	0.0151 (5)	0.0052 (4)	0.0097 (5)	0.0022 (4)
08	0.0265 (6)	0.0254 (6)	0.0227 (6)	0.0006 (5)	0.0057 (5)	-0.0001 (5)
09	0.0401 (8)	0.0243 (6)	0.0180 (6)	0.0057 (5)	0.0085 (5)	0.0053 (4)
O10	0.0224 (6)	0.0204 (5)	0.0289 (6)	0.0013 (4)	0.0099 (5)	-0.0037 (5)
011	0.0310 (7)	0.0252 (6)	0.0390 (8)	0.0076 (5)	0.0063 (6)	0.0022 (5)
012	0.0381 (8)	0.0297 (6)	0.0213 (6)	0.0014 (5)	0.0088 (5)	-0.0021 (5)
C1	0.0248 (8)	0.0175 (6)	0.0161 (7)	0.0020 (6)	0.0091 (6)	0.0007 (5)
C2	0.0287 (9)	0.0184 (6)	0.0165 (7)	0.0010 (6)	0.0107 (6)	-0.0016 (5)
C3	0.0241 (8)	0.0197 (7)	0.0225 (8)	0.0012 (6)	0.0110 (7)	-0.0009 (6)
C4	0.0294 (9)	0.0172 (6)	0.0158 (7)	0.0033 (6)	0.0099 (6)	0.0020 (5)
C5	0.0245 (8)	0.0182 (6)	0.0212 (7)	0.0027 (6)	0.0103 (7)	0.0015 (6)
C6	0.0240 (8)	0.0199 (7)	0.0154 (7)	0.0012 (6)	0.0088 (6)	0.0012 (5)
C7	0.0283 (9)	0.0188 (7)	0.0278 (8)	0.0016 (6)	0.0112 (7)	-0.0021 (6)

C8	0.0286 (9)	0.0227 (7)	0.0356 (10)	-0.0018 (6)	0.0133 (8)	-0.0006 (7)
С9	0.0257 (9)	0.0316 (8)	0.0244 (8)	0.0025 (7)	0.0115 (7)	0.0035 (7)
C10	0.0327 (10)	0.0254 (8)	0.0293 (9)	0.0092 (7)	0.0175 (8)	0.0048 (7)
C11	0.0348 (10)	0.0178 (7)	0.0263 (8)	0.0033 (6)	0.0159 (7)	0.0018 (6)
C12	0.0290 (10)	0.0412 (10)	0.0443 (12)	0.0038 (8)	0.0190 (9)	0.0072 (9)
C13	0.0197 (8)	0.0280 (8)	0.0260 (8)	0.0004 (6)	0.0066 (7)	-0.0001 (7)
C14	0.0246 (9)	0.0318 (8)	0.0254 (8)	0.0006 (7)	0.0066 (7)	0.0050 (7)
C15	0.0270 (9)	0.0374 (9)	0.0237 (8)	0.0020 (7)	0.0083 (7)	0.0040 (7)
C16	0.0222 (9)	0.0348 (9)	0.0281 (9)	0.0030 (7)	0.0064 (7)	-0.0026 (7)
C17	0.0265 (9)	0.0282 (8)	0.0381 (10)	0.0001 (7)	0.0125 (8)	-0.0001 (7)
C18	0.0221 (8)	0.0274 (8)	0.0317 (9)	-0.0013 (6)	0.0111 (7)	0.0012 (7)
C19	0.0365 (11)	0.0414 (10)	0.0337 (10)	0.0048 (8)	0.0130 (9)	-0.0035 (8)
C20	0.0285 (9)	0.0197 (7)	0.0169 (7)	0.0023 (6)	0.0105 (6)	0.0002 (6)
C21	0.0354 (10)	0.0204 (7)	0.0254 (8)	-0.0007 (6)	0.0140 (7)	0.0004 (6)
C22	0.0319 (10)	0.0280 (8)	0.0252 (8)	-0.0043 (7)	0.0130 (7)	-0.0007 (7)
C23	0.0311 (9)	0.0290 (8)	0.0191 (8)	0.0028 (7)	0.0116 (7)	-0.0006 (6)
C24	0.0381 (10)	0.0216 (7)	0.0336 (9)	0.0063 (7)	0.0185 (8)	0.0012 (7)
C25	0.0331 (10)	0.0205 (7)	0.0295 (9)	-0.0013 (6)	0.0149 (8)	0.0004 (6)
C26	0.0344 (11)	0.0411 (10)	0.0322 (10)	0.0068 (8)	0.0168 (8)	-0.0009 (8)
C27	0.0178 (8)	0.0248 (7)	0.0242 (8)	0.0014 (6)	0.0051 (6)	-0.0021 (6)
C28	0.0228 (8)	0.0244 (8)	0.0300 (9)	0.0010 (6)	0.0120 (7)	-0.0043 (6)
C29	0.0254 (9)	0.0257 (8)	0.0373 (10)	-0.0005 (6)	0.0133 (8)	-0.0007 (7)
C30	0.0204 (9)	0.0401 (10)	0.0284 (9)	-0.0018 (7)	0.0093 (7)	0.0017 (7)
C31	0.0254 (9)	0.0430 (10)	0.0236 (8)	0.0032 (7)	0.0097 (7)	-0.0056 (7)
C32	0.0272 (9)	0.0296 (8)	0.0238 (8)	0.0034 (7)	0.0056 (7)	-0.0064 (7)
C33	0.0358 (11)	0.0524 (12)	0.0406 (12)	-0.0050 (9)	0.0198 (9)	0.0083 (10)

Geometric parameters (Å, °)

S1—O3	1.4238 (12)	C12—H12C	0.96
S1—O2	1.4315 (12)	C12—H12D	0.96
S1—O1	1.5833 (11)	C13—C14	1.389 (2)
S1—C6	1.7453 (17)	C13—C18	1.392 (2)
S2—O5	1.4244 (13)	C14—C15	1.386 (3)
S2—O6	1.4314 (13)	C14—H14A	0.93
S2—O4	1.5840 (13)	C15—C16	1.396 (3)
S2—C13	1.7435 (18)	C15—H15A	0.93
S3—O9	1.4252 (12)	C16—C17	1.395 (3)
S3—O8	1.4271 (13)	C16—C19	1.508 (3)
S3—O7	1.5848 (11)	C17—C18	1.375 (3)
S3—C20	1.7518 (17)	C17—H17A	0.93
S4—O11	1.4240 (13)	C18—H18A	0.93
S4—O12	1.4274 (13)	C19—H19A	0.96
S4—O10	1.5899 (13)	C19—H19B	0.96
S4—C27	1.7404 (18)	С19—Н19С	0.96
O1—C2	1.4578 (18)	C20—C21	1.391 (2)
O4—C3	1.458 (2)	C20—C25	1.393 (2)
O7—C4	1.4546 (18)	C21—C22	1.385 (3)
O10—C5	1.4559 (19)	C21—H21A	0.93

C1—C4	1.528 (2)	C22—C23	1.393 (2)
C1—C3	1.530 (2)	C22—H22A	0.93
C1—C2	1.531 (2)	C23—C24	1.388 (3)
C1—C5	1.531 (2)	C23—C26	1.502 (3)
C2—H2B	0.97	C24—C25	1.384 (3)
C2—H2C	0.97	C24—H24A	0.93
С3—Н3В	0.97	C25—H25A	0.93
С3—НЗС	0.97	C26—H26A	0.96
C4—H4A	0.97	C26—H26B	0.96
C4—H4B	0.97	С26—Н26С	0.96
С5—Н5В	0.97	C27—C28	1.383 (2)
С5—Н5С	0.97	C27—C32	1.391 (2)
C6—C7	1.390 (2)	C28—C29	1.383 (2)
C6—C11	1.394 (2)	C28—H28A	0.93
С7—С8	1.380 (2)	C29—C30	1.384 (3)
С7—Н7А	0.93	C29—H29A	0.93
C8—C9	1.392 (2)	C30—C31	1.396 (3)
C8—H8B	0.93	C30—C33	1.506 (3)
C9—C10	1.395 (2)	C31—C32	1.375 (3)
C9—C12	1.503 (3)	C31—H31A	0.93
C10—C11	1.382 (3)	C32—H32A	0.93
C10—H10A	0.93	С33—Н33А	0.96
C11—H11B	0.93	С33—Н33В	0.96
C12—H12B	0.96	С33—Н33С	0.96
O3—S1—O2	120.75 (8)	С9—С12—Н12С	109.5
O3—S1—O1	103.71 (7)	H12B—C12—H12C	109.5
O2—S1—O1	108.68 (7)	C9—C12—H12D	109.5
O3—S1—C6	109.30 (8)	H12B—C12—H12D	109.5
O2—S1—C6	109.11 (7)	H12C—C12—H12D	109.5
O1—S1—C6	103.91 (7)	C14—C13—C18	121.01 (16)
O5—S2—O6	119.85 (8)	C14—C13—S2	118.89 (13)
O5—S2—O4	103.83 (8)	C18—C13—S2	120.09 (14)
O6—S2—O4	108.03 (8)	C15-C14-C13	118.81 (17)
O5—S2—C13	110.30 (9)	C15—C14—H14A	120.6
O6—S2—C13	108.69 (8)	C13-C14-H14A	120.6
O4—S2—C13	105.06 (8)	C14—C15—C16	121.31 (17)
O9—S3—O8	120.30 (8)	C14—C15—H15A	119.3
O9—S3—O7	103.79 (7)	C16—C15—H15A	119.3
O8—S3—O7	108.60 (7)	C17—C16—C15	118.28 (17)
O9—S3—C20	109.69 (8)	C17—C16—C19	120.99 (17)
O8—S3—C20	109.06 (7)	C15—C16—C19	120.73 (17)
O7—S3—C20	104.11 (7)	C18—C17—C16	121.45 (17)
011—84—012	119.87 (8)	C18—C17—H17A	119.3
O11—S4—O10	103.51 (7)	С16—С17—Н17А	119.3
O12—S4—O10	108.71 (7)	C17—C18—C13	119.13 (17)
O11—S4—C27	109.74 (8)	C17—C18—H18A	120.4
O12—S4—C27	109.16 (8)	C13—C18—H18A	120.4
O10—S4—C27	104.68 (7)	С16—С19—Н19А	109.5
C2—O1—S1	117.87 (9)	C16—C19—H19B	109.5

C3—O4—S2	118.41 (10)	H19A—C19—H19B	109.5
C4—O7—S3	117.34 (9)	С16—С19—Н19С	109.5
C5—O10—S4	117.92 (10)	H19A—C19—H19C	109.5
C4—C1—C3	111.13 (13)	H19B—C19—H19C	109.5
C4—C1—C2	106.71 (12)	C21—C20—C25	120.63 (16)
C3—C1—C2	110.60 (13)	C21—C20—S3	119.40 (12)
C4—C1—C5	110.94 (13)	C25—C20—S3	119.97 (13)
C3—C1—C5	106.66 (12)	C22—C21—C20	118.94 (15)
C2—C1—C5	110.85 (13)	C22—C21—H21A	120.5
O1—C2—C1	106.24 (11)	C20-C21-H21A	120.5
O1—C2—H2B	110.5	C21—C22—C23	121.42 (17)
C1—C2—H2B	110.5	C21—C22—H22A	119.3
O1—C2—H2C	110.5	C23—C22—H22A	119.3
C1—C2—H2C	110.5	C24—C23—C22	118.54 (17)
H2B—C2—H2C	108.7	C24—C23—C26	121.25 (16)
O4—C3—C1	107.03 (12)	C22—C23—C26	120.21 (17)
O4—C3—H3B	110.3	C25—C24—C23	121.23 (16)
С1—С3—Н3В	110.3	C25—C24—H24A	119.4
O4—C3—H3C	110.3	C23—C24—H24A	119.4
С1—С3—Н3С	110.3	C24—C25—C20	119.23 (17)
НЗВ—СЗ—НЗС	108.6	C24—C25—H25A	120.4
O7—C4—C1	106.63 (11)	C20—C25—H25A	120.4
O7—C4—H4A	110.4	С23—С26—Н26А	109.5
C1—C4—H4A	110.4	С23—С26—Н26В	109.5
O7—C4—H4B	110.4	H26A—C26—H26B	109.5
C1—C4—H4B	110.4	С23—С26—Н26С	109.5
H4A—C4—H4B	108.6	H26A—C26—H26C	109.5
O10-C5-C1	106.62 (12)	H26B—C26—H26C	109.5
O10—C5—H5B	110.4	C28—C27—C32	120.99 (16)
C1—C5—H5B	110.4	C28—C27—S4	119.91 (13)
O10-C5-H5C	110.4	C32—C27—S4	119.03 (13)
C1—C5—H5C	110.4	C27—C28—C29	118.85 (16)
H5B—C5—H5C	108.6	C27—C28—H28A	120.6
C7—C6—C11	120.93 (16)	C29—C28—H28A	120.6
C7—C6—S1	120.88 (13)	C28—C29—C30	121.41 (16)
C11—C6—S1	118.18 (12)	С28—С29—Н29А	119.3
C8—C7—C6	118.92 (15)	С30—С29—Н29А	119.3
С8—С7—Н7А	120.5	C29—C30—C31	118.61 (17)
С6—С7—Н7А	120.5	C29—C30—C33	120.43 (18)
C7—C8—C9	121.64 (16)	C31—C30—C33	120.96 (18)
С7—С8—Н8В	119.2	C32—C31—C30	120.96 (17)
С9—С8—Н8В	119.2	C32—C31—H31A	119.5
C8—C9—C10	118.19 (16)	C30—C31—H31A	119.5
C8—C9—C12	121.62 (17)	C31—C32—C27	119.18 (16)
C10—C9—C12	120.19 (16)	C31—C32—H32A	120.4
C11—C10—C9	121.47 (16)	C27—C32—H32A	120.4
C11—C10—H10A	119.3	С30—С33—Н33А	109.5
C9—C10—H10A	119.3	С30—С33—Н33В	109.5
C10-C11-C6	118.85 (15)	H33A—C33—H33B	109.5

C10-C11-H11B	120.6	С30—С33—Н33С	109.5
C6—C11—H11B	120.6	H33A—C33—H33C	109.5
C9—C12—H12B	109.5	H33B—C33—H33C	109.5
O3—S1—O1—C2	-170.85 (11)	O4—S2—C13—C14	83.71 (15)
02—S1—O1—C2	-41.20 (13)	O5—S2—C13—C18	151.46 (14)
C6—S1—O1—C2	74.89 (12)	O6—S2—C13—C18	18.19 (17)
O5—S2—O4—C3	-173.46 (11)	O4—S2—C13—C18	-97.23 (15)
O6—S2—O4—C3	-45.20 (13)	C18—C13—C14—C15	-0.4 (3)
C13—S2—O4—C3	70.68 (13)	S2-C13-C14-C15	178.62 (14)
O9—S3—O7—C4	-176.31 (12)	C13-C14-C15-C16	0.4 (3)
08—S3—O7—C4	-47.20 (13)	C14—C15—C16—C17	-0.3 (3)
C20—S3—O7—C4	68.89 (13)	C14—C15—C16—C19	179.71 (18)
O11—S4—O10—C5	-170.33 (11)	C15-C16-C17-C18	0.1 (3)
O12—S4—O10—C5	-41.85 (13)	C19—C16—C17—C18	-179.86 (18)
C27—S4—O10—C5	74.70 (12)	C16—C17—C18—C13	-0.1 (3)
S1—O1—C2—C1	-175.72 (10)	C14—C13—C18—C17	0.3 (3)
C4—C1—C2—O1	-173.83 (13)	S2-C13-C18-C17	-178.76 (14)
C3—C1—C2—O1	65.17 (16)	O9—S3—C20—C21	-37.17 (15)
C5—C1—C2—O1	-52.92 (16)	O8—S3—C20—C21	-170.84 (13)
S2-04-C3-C1	154.00 (10)	Q7— <u>\$3</u> — <u>C20</u> — <u>C21</u>	73.38 (14)
C4-C1-C3-O4	-60.20 (16)	09— <u>\$3</u> — <u>C20</u> — <u>C25</u>	142.69 (14)
$C_2 - C_1 - C_3 - O_4$	58.14 (16)	08— <u>\$3</u> — <u>C20</u> — <u>C25</u>	9.02 (16)
C5-C1-C3-O4	178.76 (12)	07-\$3-C20-C25	-106.76(14)
S3-07-C4-C1	-179.78(10)	C25-C20-C21-C22	-1.1 (3)
C_{3} $-C_{1}$ $-C_{4}$ $-O_{7}$	-60.81 (16)	S3-C20-C21-C22	178 76 (13)
$C_2 - C_1 - C_4 - O_7$	178 53 (13)	$C_{20} - C_{21} - C_{22} - C_{23}$	03(3)
C_{5} C_{1} C_{4} O_{7}	57 68 (16)	$C_{21} - C_{22} - C_{23} - C_{24}$	0.5(3)
84-010-C5-C1	154 75 (10)	$C_{21} - C_{22} - C_{23} - C_{26}$	-17859(17)
C4-C1-C5-O10	62.45 (15)	C_{22} C_{23} C_{24} C_{25}	-0.4(3)
C_{3} C_{1} C_{5} O_{10}	-17639(12)	$C_{26} = C_{23} = C_{24} = C_{25}$	178 66 (16)
$C_2 - C_1 - C_5 - O_{10}$	-55.93(15)	C_{23} C_{24} C_{25} C_{20}	-0.4(3)
03 = 81 = C6 = C7	142,11 (13)	$C_{21} = C_{20} = C_{25} = C_{24}$	12(3)
02 - 81 - C6 - C7	8 11 (16)	S3-C20-C25-C24	-17869(13)
01 - 81 - 6 - 67	-10768(14)	011 - 84 - C27 - C28	138 81 (14)
03 - 81 - 6 - 611	-37.20(15)	012 - 84 - C27 - C28	5 58 (17)
02 - 81 - C6 - C11	$-171\ 20\ (12)$	010 - 84 - C27 - C28	-110.67(14)
01 - 81 - 66 - 611	73 01 (14)	011 - 84 - C27 - C32	-38.17(16)
$C_{11} - C_{6} - C_{7} - C_{8}$	-0.1(2)	012 - 84 - C27 - C32	-17140(14)
S1_C6_C7_C8	-179.35(13)	012 - 51 - 027 - 032	72 35 (15)
C_{6} C_{7} C_{8} C_{9}	-0.1(3)	$C_{32} - C_{27} - C_{28} - C_{29}$	0.0(3)
C7 - C8 - C9 - C10	0.1(3)	S4-C27-C28-C29	-176.92(14)
C7 - C8 - C9 - C12	179 59 (17)	$C_{27} - C_{28} - C_{29} - C_{30}$	-0.2(3)
C8 - C9 - C10 - C11	-0.1(3)	$C_{28} - C_{29} - C_{30} - C_{31}$	0.5(3)
C_{12} C_{9} C_{10} C_{11}	-179 50 (17)	$C_{28} - C_{29} - C_{30} - C_{33}$	-179 33 (18)
C9-C10-C11-C6	0.0 (3)	$C_{29} = C_{30} = C_{31} = C_{32}$	-0.6(3)
C7-C6-C11-C10	0.2(2)	C_{33} C_{30} C_{31} C_{32}	179 26 (18)
81—C6—C11—C10	179 46 (13)	C_{30} C_{31} C_{32} C_{27}	0.4(3)
05-82-C13-C14	-27 60 (17)	C_{28} C_{27} C_{32} C_{31}	-0.1(3)
06 - 82 - C13 - C14	-160.86(14)	84 <u>-</u> C27 <u>-</u> C32 <u>-</u> C31	176 88 (14)
00 52 015 017	100.00 (11)	51 027 032 031	1,0.00 (14)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C2—H2C…O4	0.97	2.48	2.849 (2)	102
С3—Н3В…О6	0.97	2.47	2.905 (2)	107
С3—Н3В…О7	0.97	2.55	2.876 (2)	100
C3—H3C…O9 ⁱ	0.97	2.46	3.433 (2)	175
C4—H4A…O4	0.97	2.55	2.879 (2)	100
С5—Н5В…О12	0.97	2.44	2.888 (2)	107
С5—Н5С…О7	0.97	2.49	2.8396 (19)	101
С7—Н7А…О2	0.93	2.58	2.937 (2)	103
C8—H8B…O11 ⁱⁱ	0.93	2.52	3.140 (2)	124
C10—H10A····O6 ⁱ	0.93	2.41	3.257 (2)	151
C18—H18A…O6	0.93	2.59	2.932 (2)	103
C22—H22A…O12 ⁱⁱⁱ	0.93	2.52	3.154 (2)	126
C25—H25A…O8	0.93	2.56	2.924 (2)	104
C28—H28A…O12	0.93	2.54	2.905 (2)	104
C29—H29A····O8 ^{iv}	0.93	2.42	3.334 (2)	165
C31—H31A…O12 ⁱⁱⁱ	0.93	2.53	3.209 (2)	130

Symmetry codes: (i) x, -y+1/2, z-1/2; (ii) -x, -y+1, -z+1; (iii) x, -y+1/2, z+1/2; (iv) -x, y-1/2, -z+3/2.

Fig. 1

